918 research outputs found

    Phase coexistence and relaxation of the spherical frustrated Blume-Emery-Griffiths model with attractive particles coupling

    Full text link
    We study the equilibrium and dynamical properties of a spherical version of the frustrated Blume-Emery-Griffiths model at mean field level for attractive particle-particle coupling (K>0). Beyond a second order transition line from a paramagnetic to a (replica symmetric) spin glass phase, the density-temperature phase diagram is characterized by a tricritical point from which, interestingly, a first order transition line starts with coexistence of the two phases. In the Langevin dynamics the paramagnetic/spin glass discontinuous transition line is found to be dependent on the initial density; close to this line, on the paramagnetic side, the correlation-response plot displays interrupted aging.Comment: to be published on Europhysics Letter

    Glass glass transition and new dynamical singularity points in an analytically solvable p-spin glass like model

    Full text link
    We introduce and analytically study a generalized p-spin glass like model that captures some of the main features of attractive glasses, recently found by Mode Coupling investigations, such as a glass/glass transition line and dynamical singularity points characterized by a logarithmic time dependence of the relaxation. The model also displays features not predicted by the Mode Coupling scenario that could further describe the attractive glasses behavior, such as aging effects with new dynamical singularity points ruled by logarithmic laws or the presence of a glass spinodal line

    Magnetar giant flare high-energy emission

    Get PDF
    High energy (>250> 250 keV) emission has been detected persisting for several tens of seconds after the initial spike of magnetar giant flares. It has been conjectured that this emission might arise via inverse Compton scattering in a highly extended corona generated by super-Eddington outflows high up in the magnetosphere. In this paper we undertake a detailed examination of this model. We investigate the properties of the required scatterers, and whether the mechanism is consistent with the degree of pulsed emission observed in the tail of the giant flare. We conclude that the mechanism is consistent with current data, although the origin of the scattering population remains an open question. We propose an alternative picture in which the emission is closer to that star and is dominated by synchrotron radiation. The RHESSIRHESSI observations of the December 2004 flare modestly favor this latter picture. We assess the prospects for the Fermi Gamma-Ray Space Telescope to detect and characterize a similar high energy component in a future giant flare. Such a detection should help to resolve some of the outstanding issues.Comment: 20 pages, 14 figure

    Failure analysis of thick composite cylinders under external pressure

    Get PDF
    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed

    Multiscale Coupling of One-dimensional Vascular Models and Elastic Tissues

    Get PDF
    We present a computational multiscale model for the efficient simulation of vascularized tissues, composed of an elastic three-dimensional matrix and a vascular network. The effect of blood vessel pressure on the elastic tissue is surrogated via hyper-singular forcing terms in the elasticity equations, which depend on the fluid pressure. In turn, the blood flow in vessels is treated as a one-dimensional network. Intravascular pressure and velocity are simulated using a high-order finite volume scheme, while the elasticity equations for the tissue are solved using a finite element method. This work addresses the feasibility and the potential of the proposed coupled multiscale model. In particular, we assess whether the multiscale model is able to reproduce the tissue response at the effective scale (of the order of millimeters) while modeling the vasculature at the microscale. We validate the multiscale method against a full scale (three-dimensional) model, where the fluid/tissue interface is fully discretized and treated as a Neumann boundary for the elasticity equation. Next, we present simulation results obtained with the proposed approach in a realistic scenario, demonstrating that the method can robustly and efficiently handle the one-way coupling between complex fluid microstructures and the elastic matrix

    Ectonucleoside triphosphate diphosphohydrolase-1/CD39 affects the response to ADP of female rat platelets

    Get PDF
    There is evidence that an imbalance of extracellular purine levels may be associated with increased cardiovascular risk. Platelets play a pivotal role in vascular homeostasis and thrombosis and are important source of purine nucleotides and nucleosides. Hydrolysis of nucleotides ATP and ADP is regulated by two ectonucleotidases, triphosphate diphosphohydrolase-1 (NTPDase-1/CD39) and ecto-5’-nucleotidase (ecto-5’-NT/CD73). CD39 enzyme is expressed on the endothelium, circulating blood cells, and smooth muscle cells; there is evidence that changes in CD39 expression and activity affects the potential thrombogenic of a tissue. Gender difference in the cardiovascular risk has been extensively observed; however, while the age-dependent difference in the prevalence of cardiovascular events between men and women has been attributed to the loss of the protective effect of estrogens in the postmenopausal period, the physiological mechanism behind gender disparity is still unclear. Here, we evaluated comparatively male and female rat platelet reactivity and considered the possible role of CD39 at the basis of difference observed. We found a reduced in vitro response to ADP (1–30 µM) of female compared to male platelets, associated to increased platelet CD39 expression and activity. Platelet response to ADP was strongly increased by incubation (10 min) with the CD39 inhibitor, ARL67156 (100 µM), while male platelet response was unaffected. Rat treatment with clopidogrel (30 mg/kg, per os) inhibited ex vivo platelet aggregation. Bleeding time was prolonged in female compared to male. Taken together, our results suggest that platelet ATPase and ADPase activity might be a reliable predictor of platelet reactivity

    A Novel Gaussian Extrapolation Approach for 2D Gel Electrophoresis Saturated Protein Spots

    Get PDF
    Analysis of images obtained from two-dimensional gel electrophoresis (2D-GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software available currently has proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2D-GE images, comparing reconstructed spots with the corresponding non-saturated image, demonstrating that the algorithm enables correct spot quantification

    A novel Gaussian fitting approach for 2D gel electrophoresis saturated protein spots

    Get PDF
    Analysis of 2D-GE images is a hot topic in bioinformatics research, since currently available commercial and academic software has proven to be not really effective and not completely automatic, often requiring manual revision of spots detection and refinement of computer generated matches. In this work, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, it reveals overexposed areas where spots may be truncated, and plateau regions caused by smeared and overlapped spots. As next, the correct distribution of pixel values in the overexposed areas and plateau regions is recovered by a two-dimensional fitting based on a generalized Gaussian distribution approximating the spots volume. Pixel correction according to the generalized Gaussian curve in saturated and smeared spots allows more accurate quantifications, providing more reliable image analysis results. As validation, we process highly exposed 2D-GE image, containing saturate spots, with respect to the corresponding non-saturated image, confirming that the method can effectively fix the saturated spots and enable correct spots quantification
    • …
    corecore